A neutral molecule in a cation-binding site: specific binding of a PEG-SH to acetylcholinesterase from Torpedo californica.

نویسندگان

  • Gertraud Koellner
  • Thomas Steiner
  • Charles B Millard
  • Israel Silman
  • Joel L Sussman
چکیده

The crystal structure of acetylcholinesterase from Torpedo californica complexed with the uncharged inhibitor, PEG-SH-350 (containing mainly heptameric polyethylene glycol with a terminal thiol group) is determined at 2.3 A resolution. This is an untypical acetylcholinesterase inhibitor, since it lacks the cationic moiety typical of the substrate (acetylcholine). In the crystal structure, the elongated ligand extends along the whole of the deep and narrow active-site gorge, with the terminal thiol group bound near the bottom, close to the catalytic site. Unexpectedly, the cation-binding site (formed by the faces of aromatic side-chains) is occupied by CH(2) groups of the inhibitor, which are engaged in C-H...pi interactions that structurally mimic the cation-pi interactions made by the choline moiety of acetylcholine. In addition, the PEG-SH molecule makes numerous other weak but specific interactions of the C-H...O and C-H...pi types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of a complex of the potent and specific inhibitor BW284C51 with Torpedo californica acetylcholinesterase.

The X-ray crystal structure of Torpedo californica acetylcholinesterase (TcAChE) complexed with BW284C51 [CO[-CH(2)CH(2)-pC(6)H(4)-N(CH(3))(2)(CH(2)-CH=CH(2))](2)] is described and compared with the complexes of two other active-site gorge-spanning inhibitors, decamethonium and E2020. The inhibitor was soaked into TcAChE crystals in the trigonal space group P3(1)21, yielding a complex which dif...

متن کامل

Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein.

The three-dimensional structure of acetylcholinesterase from Torpedo californica electric organ has been determined by x-ray analysis to 2.8 angstrom resolution. The form crystallized is the glycolipid-anchored homodimer that was purified subsequent to solubilization with a bacterial phosphatidylinositol-specific phospholipase C. The enzyme monomer is an alpha/beta protein that contains 537 ami...

متن کامل

The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.

Bifunctional derivatives of the alkaloid galanthamine, designed to interact with both the active site of the enzyme acetylcholinesterase (AChE) and its peripheral cation binding site, have been assayed with Torpedo californica AChE (TcAChE), and the three-dimensional structures of their complexes with the enzyme have been solved by X-ray crystallography. Differences were noted between the IC(50...

متن کامل

Structural insights into substrate traffic and inhibition in acetylcholinesterase.

Acetylcholinesterase (AChE) terminates nerve-impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter, acetylcholine. Substrate traffic in AChE involves at least two binding sites, the catalytic and peripheral anionic sites, which have been suggested to be allosterically related and involved in substrate inhibition. Here, we present the crystal structures of Torp...

متن کامل

Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica.

Buried water molecules and the water molecules in the active-site gorge are analyzed for five crystal structures of acetylcholinesterase from Torpedo californica in the resolution range 2.2-2.5 A (native enzyme, and four inhibitor complexes). A total of 45 buried hydration sites are identified, which are populated with between 36 and 41 water molecules. About half of the buried water is located...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 320 4  شماره 

صفحات  -

تاریخ انتشار 2002